Published in

American Physical Society, Physical Review D, 4(91)

DOI: 10.1103/physrevd.91.044017

Links

Tools

Export citation

Search in Google Scholar

I-Love relations for incompressible stars and realistic stars

Journal article published in 2015 by T. K Chan ORCID, AtMa P. O Chan, P. T Leung
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In spite of the diversity in the equations of state of nuclear matter, the recently discovered I-Love-Q relations [Yagi and Yunes, Science {\bf 341}, 365 (2013)], which relate the moment of inertia, tidal Love number (deformability) and the spin-induced quadrupole moment of compact stars, hold for various kinds of realistic neutron stars and quark stars. While the physical origin of such universality is still a current issue, the observation that the I-Love-Q relations of incompressible stars can well approximate those of realistic compact stars hints at a new direction to approach the problem. In this paper, by establishing recursive post-Minkowskian expansion for the moment of inertia and the tidal deformability of incompressible stars, we analytically derive the I-Love relation for incompressible stars and show that the so obtained formula can be used to accurately predict the behavior of realistic compact stars from the Newtonian limit to the maximum mass limit. ; Comment: 13 pages, 4 tables and 3 figures