Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 22(111), p. 8101-8106, 2014

DOI: 10.1073/pnas.1320646111

Links

Tools

Export citation

Search in Google Scholar

Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Biological nitrogen fixation (BNF) is the largest natural source of new nitrogen (N) to terrestrial ecosystems. Tropical forest ecosystems are a putative global hotspot of BNF, but direct, spatially explicit measurements in the biome are virtually nonexistent. Nonetheless, robust estimates of tropical forest BNF are critical for understanding how these important ecosystems may respond to global change and assessing human perturbations to the N cycle. Here, we introduce a spatial sampling method to assess BNF and present evidence that tropical forest BNF is much lower than previously assumed. Our results imply that humans have roughly doubled N inputs to the tropical forest biome relative to N inputs through BNF.