Published in

American Institute of Physics, The Journal of Chemical Physics, 13(123), p. 134308

DOI: 10.1063/1.2047572

Links

Tools

Export citation

Search in Google Scholar

Potential-energy surface for the electronic ground state of NH3 up to 20000cm−1 above equilibrium

Journal article published in 2005 by Sergei N. Yurchenko ORCID, Jingjing Zheng ORCID, Hai Lin, Per Jensen, Walter Thiel ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Ab initio coupled cluster calculations with single and double substitutions and a perturbative treatment of connected triple excitations [CCSD(T)] with the augmented correlation-consistent polarized valence triple-zeta aug-cc-pVTZ basis at 51 816 geometries provide a six-dimensional potential-energy surface for the electronic ground state of NH3. At 3814 selected geometries, CBS+ energies are obtained by extrapolating the CCSD(T) results for the aug-cc-pVXZ(X=T,Q,5) basis sets to the complete basis set (CBS) limit and adding corrections for core-valence correlation and relativistic effects. CBS** ab initio energies are generated at 51,816 geometries by an empirical extrapolation of the CCSD(T)/aug-cc-pVTZ results to the CBS+ limit. They cover the energy region up to 20,000 cm-1 above equilibrium. Parametrized analytical functions are fitted through the ab initio points. For these analytical surfaces, vibrational term values and transition moments are calculated by means of a variational program employing a kinetic-energy operator expressed in the Eckart-Sayvetz frame. Comparisons against experiment are used to assess the quality of the generated potential-energy surfaces. A "spectroscopic" potential-energy surface of NH3 is determined by a slight empirical adjustment of the ab initio potential to the experimental vibrational term values. Variational calculations on this refined surface yield rms deviations from experiment of 0.8 cm-1 for 24 inversion splittings and 0.4 (3.0) cm-1 for 34 (51) vibrational term values up to 6100 (10,300) cm-1.