Published in

Elsevier, Thin Solid Films, (531), p. 208-216, 2013

DOI: 10.1016/j.tsf.2013.01.095

Links

Tools

Export citation

Search in Google Scholar

Chemical and mechanical properties of silica hybrid films from NaOH catalyzed sols for micromachining with diamond cutting tools

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Manufacturing of microstructured mold surfaces was realized by the micromachining of thick sol–gel silica hybrid coatings. The films were deposited onto pre-machined steel molds by spin coating using NaOH-catalyzed sols from organosilicate precursors. The effect of the sol synthesis and the heat treatment on the mechanical and chemical properties of these films was studied in order to develop thick and crack-free films with appropriate properties for micromachining with diamond cutting tools. The hardness was measured by nanoindentation as a function of the heat treatment temperature. The transition from soft organic gel films to hard glass-like films due to the thermal treatment was characterized by X-ray photoelectron spectroscopy, elastic recoil detection, and Raman and infrared spectroscopies. The films from NaOH catalyzed sols showed a complex transition from aliphatic carbon originating from hydrocarbon groups to carbonates, carboxylates and disordered carbon clusters.