Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Physics and Chemistry of the Earth, Parts A/B/C, (47-48), p. 114-121

DOI: 10.1016/j.pce.2011.08.005

Links

Tools

Export citation

Search in Google Scholar

Wetland versus open water evaporation: An analysis and literature review

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Is the total evaporation from a wetland surface (including: open water evaporation, plant transpiration and wet/dry soil evaporation) similar, lower, or higher than evaporation from an open water surface under the same climatic conditions? This question has been the subject of long debate; the literature does not show a consensus. In this paper we contribute to the discussion in two steps. First, we analyse the evaporation from a wetland with emergent vegetation (Ea) versus open water evaporation (Ew) by applying the Penman–Monteith equation to identical climate input data, but with different biophysical characteristics of each surface. Second, we assess the variability of measured Ea/Ew through a literature review of selected wetlands around the globe.We demonstrate that the ratio Ea/Ew is site-specific, and a function of the biophysical properties of the wetland surface, which can also undergo temporal variability depending on local hydro-climate conditions. Second, we demonstrate that the Penman–Monteith model provides a suitable basis to interpret Ea/Ew variations. This implies that the assumption of wetland evaporation to behave similar to open water bodies is not correct. This has significant implications for the total water consumption and water allocation to wetlands in river basin management.