Published in

Elsevier, Biophysical Journal, 2(78), p. 1059-1069, 2000

DOI: 10.1016/s0006-3495(00)76664-1

Links

Tools

Export citation

Search in Google Scholar

Study by (23)Na-NMR, (1)H-NMR, and ultraviolet spectroscopy of the thermal stability of an 11-basepair oligonucleotide.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

23Na-NMR, (1)H-NMR, and ultraviolet (UV) spectroscopy have been used to study the thermal stability of the double helix structure of an 11-basepair oligonucleotide. The denaturation curves obtained by (23)Na-NMR and UV are analyzed using a two-state model. The melting temperature and DeltaH(0) obtained are identical within experimental error, suggesting that modifications in the ionic atmosphere, probed by (23)Na-NMR, and the modifications in the basepair stacking, probed by UV, occur at the same temperature. Additional dynamical information on the denaturation process has been obtained by (1)H-NMR: slow exchange is observed between the thymine methyl resonances, and the disappearance of imino protons shows that a single basepair opening does not contribute significantly to proton exchange.