Published in

13th International School on Quantum Electronics: Laser Physics and Applications

DOI: 10.1117/12.619002

Links

Tools

Export citation

Search in Google Scholar

Hydroxyapatite kinetic deposition on solid substrates induced by laser-liquid-solid interaction

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Hydroxyapatite (HA) is present in the human body as a mineral constituent of the bones and teeth, as well as a major or minor component of kidney stones. HA deposited on different solid substrates can find applications including biomaterials and biosensors. This work deals with the kinetics of the HA growth by applying a novel method of laser-liquid-solid-interaction (LLSI) process on three types of materials (stainless stell, silicon and silica glass). The method allows interaction between a pulsed laser and a substrate immersed in a solution (simulated body fluid, SBF). By a scanning system, a design of seven squares at a distance of 200 mum was created at the end of each sample. In this way the center of the substrate (about 6x6 mm) was no irradiated. Following the LLSI process, the samples were left in the irradiated SBF for various intervals of time. Light microscopy (LM) showed surfaces seede with randomly distributed transparent and white particles. The surface seeding increased with the immersion time and was dependent on the substrate type. Fourier transform infrared (FTIR) spectrsocopy showed that in the first stage of soaking (up to 6 h) the observed white particles were calcium phosphate containing. Energy dispersive X-ray (EDX) spectrsocopy revealed that the transparent particles were NaCl. In the next stage (after 12 h) vibrational modes typical for HA were clearly observed. Detailed observation with scanning electron microscopy (SEM) after 12 h showed morphology of sphere-like aggregates, grouped in a porous network. Raman spectroscopy, X-ray diffraction (XRD) and EDX confirmed that after 12 h the grown layer was HA. It was found that in comparison to the traditionally empoyed prolonged soaking in SBF, the applied LLSI process yielded a synergistic effect due to the simultaneous use of the solid substrate, the aqueous solution and the laser energy.