Published in

American Institute of Physics, Applied Physics Letters, 25(103), p. 251111

DOI: 10.1063/1.4855055

Links

Tools

Export citation

Search in Google Scholar

Impact of transparent electrode on photoresponse of ZnO-based phototransistor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ZnO-based photo-thin film transistors with enhanced photoresponse were developed using transparent conductive oxide contacts. Changing the electrode from opaque Mo to transparent In-Zn-O increases the photocurrent by five orders of magnitude. By changing the opacity of each source and drain electrode, we could observe how the photoresponse is affected. We deduce that the photocurrent generation mechanism is based on an energy band change due to the photon irradiation. More importantly, we reveal that the photocurrent is determined by the energy barrier of injected electrons at the interface between the source electrode and the active layer.