Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), Protein Engineering, Design & Selection, 3(21), p. 155-160

DOI: 10.1093/protein/gzm077

Links

Tools

Export citation

Search in Google Scholar

The folding pathway of an engineered circularly permuted PDZ domain

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To understand the role of sequence connectivity in the folding pathway of a multi-state protein, we have analysed the folding kinetics of an engineered circularly permuted PDZ domain. This variant has been designed with the specific aim of posing two of the strands participating in the stabilisation of an early folding nucleus as contiguous elements in the primary structure. Folding of the circularly permuted PDZ2 has been explored by a variety of different experimental approaches including stopped-flow and continuous-flow kinetics, as well as ligand-induced folding experiments. Data reveal that although circular permutation introduces a significant destabilisation of the native state, a folding intermediate is stabilised and accumulated prior folding. Furthermore, quantitative analysis of the observed kinetics indicates an acceleration of the early folding events by more than two orders of magnitude. The results support the importance of sequence connectivity both in the mechanism and the speed of protein folding. © The Author 2008. Published by Oxford University Press. All rights reserved.