Published in

Elsevier, Journal of Lipid Research, 1(48), p. 77-85, 2007

DOI: 10.1194/jlr.m600050-jlr200

Links

Tools

Export citation

Search in Google Scholar

Metabolism of phytol to phytanic acid in the mouse, and the role of PPARα in its regulation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Phytol, a branched-chain fatty alcohol, is the naturally occurring precursor of phytanic and pristanic acid, branched-chain fatty acids that are both ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha). To investigate the metabolism of phytol and the role of PPARalpha in its regulation, wild-type and PPARalpha knockout (PPARalpha-/-) mice were fed a phytol-enriched diet or, for comparison, a diet enriched with Wy-14,643, a synthetic PPARalpha agonist. After the phytol-enriched diet, phytol could only be detected in small intestine, the site of uptake, and liver. Upon longer duration of the diet, the level of the (E)-isomer of phytol increased significantly in the liver of PPARalpha-/- mice compared with wild-type mice. Activity measurements of the enzymes involved in phytol metabolism showed that treatment with a PPARalpha agonist resulted in a PPARalpha-dependent induction of at least two steps of the phytol degradation pathway in liver. Furthermore, the enzymes involved showed a higher activity toward the (E)-isomer than the (Z)-isomer of their respective substrates, indicating a stereospecificity toward the metabolism of (E)-phytol. In conclusion, the results described here show that the conversion of phytol to phytanic acid is regulated via PPARalpha and is specific for the breakdown of (E)-phytol.