Public Library of Science, PLoS ONE, 10(10), p. e0140558, 2015
DOI: 10.1371/journal.pone.0140558
Full text: Download
We analysed pigeon flock flights using GPS trajectory data to reveal the most important kinematic aspects of flocking behaviour. We quantitatively investigated the internal motion of the flock based on pairwise statistics and found the following general relationships in all datasets: i) the temporal order of decisions characterised by the delay between directional changes is strictly related to the spatial order characterised by the longitudinal relative position within the flock; ii) during circling motion, pigeons use a mixture of two idealised and fundamentally different turning strategies, namely, parallel-path and equal-radius type turning. While pigeons tend to maintain their relative position within the flock on average, as in the parallel-path approximation, those who turn later also get behind as in the equal-radius case. Equal-radius type turning also tends to be expressed more during smaller radius turns.