Published in

Wiley, Journal of Animal Ecology, 1(76), p. 30-35, 2007

DOI: 10.1111/j.1365-2656.2006.01174.x

Links

Tools

Export citation

Search in Google Scholar

Scale dependence of immigration rates: Models, metrics and data

Journal article published in 2007 by Göran Englund, Peter A. Hambäck ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

1. We examine the relationship between immigration rate and patch area for different types of movement behaviours and detection modes. Theoretical models suggest that the scale dependence of the immigration rate per unit area (I/A) can be described by a power model I/A = i*Area(zeta), where zeta describes the strength of the scale dependence. 2. Three types of scaling were identified. Area scaling (zeta = 0) is expected for passively dispersed organisms that have the same probability of landing anywhere in the patch. Perimeter scaling (-0.30 > zeta > -0.45) is expected when patches are detected from a very short distance and immigrants arrive over the patch boundary, whereas diameter scaling (zeta = -0.5) is expected if patches are detected from a long distance or if search is approximately linear. 3. A meta-analysis of published empirical studies of the scale dependence of immigration rates in terrestrial insects suggests that butterflies show diameter scaling, aphids show area scaling, and the scaling of beetle immigration is highly variable. We conclude that the scaling of immigration rates in many cases can be predicted from search behaviour and the mode of patch detection.