Published in

Wiley Open Access, FASEB Journal, 7(21), p. 1575-1585, 2007

DOI: 10.1096/fj.06-7457com

Links

Tools

Export citation

Search in Google Scholar

The Toll‐like receptor 7/8‐ligand resiquimod (R‐848) primes human neutrophils for leukotriene B<sub>4</sub>, prostaglandin E<sub>2</sub>and platelet‐activating factor biosynthesis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Toll-like receptors (TLR) recognize pathogen-associated molecular patterns and play important roles in the innate immune system. While single-stranded viral RNA is the natural ligand of TLR7/TLR8, the imidazoquinoline resiquimod (R-848) is recognized as a potent synthetic agonist of TLR7/TLR8. We investigated the effects of TLR7/8 activation on lipid mediator production in polymorphonuclear leukocytes exposed to R-848. Although R-848 had minimal effects by itself, it strongly enhanced leukotriene B4 formation on subsequent stimulation by fMLP, platelet-activating factor, and the ionophore A23187. R-848 acted via TLR8 but not TLR7 as shown by the lack of effect of the TLR7-specific ligand imiquimod. Priming with R-848 also resulted in enhanced arachidonic acid release and platelet-activating factor formation following fMLP stimulation, as well as enhanced prostaglandin E2 synthesis following the addition of arachidonic acid. Western blot analysis demonstrated that R-848 induced the phosphorylation of the cytosolic phospholipase A2alpha, promoted 5-lipoxygenase translocation and potently stimulated the expression of the type 2 cyclooxygenase. Bafilomycin A1, an inhibitor of endosomal acidification, efficiently inhibited all R-848-induced effects. These studies demonstrate that TLR8 signaling strongly promotes inflammatory lipid mediator biosynthesis and provide novel insights on innate immune response to viral infections.