Wiley, Sedimentology, 3(59), p. 766-794, 2011
DOI: 10.1111/j.1365-3091.2011.01275.x
Full text: Download
Lower Priabonian coral bioherms and biostromes, encased in prodelta marls/clays, occur in the Aínsa-Jaca piggyback basin, in the South Central Pyrenean zone. Detailed mapping of lithofacies and bounding surfaces onto photomosaics reveals the architecture of coral buildups. Coral lithosomes occur either isolated or amalgamated in larger buildups. Isolated lithosomes are 1 to 8 m thick and a few hundred metres wide; clay content within coral colonies is significant. Stacked bioherms form low-relief buildups, commonly 20 to 30 m thick, locally up to 50 m. These bioherms are progressively younger to the west, following progradation of the deltaic complex. The lowermost skeletal-rich beds consist of bryozoan floatstone with wackestone to packstone matrix, in which planktonic foraminifera are abundant and light-related organisms absent. Basal coral biostromes, and the base of many bioherms, consist of platy-coral colonies ‘floating’ in a fine-grained matrix rich in branches of red algae. Corals with domal or massive shape, locally mixed with branching corals and phaceloid coral colonies, dominate buildup cores. These corals are surrounded by matrix and lack organic framework. The matrix consists of wackestone to packstone, locally floatstone, with conspicuous red algal and coral fragments, along with bryozoans, planktonic and benthonic foraminifera and locally sponges. Coral rudstone and skeletal packstone, with wackestone to packstone matrix, also occur as wedges abutting the buildup margins. Integrative analysis of rock textures, skeletal components, buildup anatomy and facies architecture clearly reveal that these coral buildups developed in a prodelta setting where shifting of delta lobes or rainfall cycles episodically resulted in water transparency that allowed zooxanthellate coral growth. The bathymetric position of the buildups has been constrained from the light-dependent communities and lithofacies distribution within the buildups. The process-product analysis used here reinforces the hypothesis that zooxanthellate corals thrived in mesophotic conditions at least during the Late Eocene and until the Late Miocene. Comparative analysis with some selected Upper Eocene coral buildups of the north Mediterranean area show similarities in facies, components and textures, and suggest that they also grew in relatively low light (mesophotic) and low hydrodynamic conditions.