Published in

University of the Basque Country Press (UBC Press), The International Journal of Developmental Biology, 4(52), p. 323-332

DOI: 10.1387/ijdb.072490gh

Links

Tools

Export citation

Search in Google Scholar

Loss of Sox9 function results in defective chondrocyte differentiation of mouse embryonic stem cells in vitro

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The transcription factor Sox9 plays an important role during chondrogenesis. After early conditional inactivation of Sox9 in mesenchymal limb bud cells of mice, mesenchymal condensations as well as cartilage and bone are completely absent in the developing limbs. We analyzed chondrogenic differentiation of Sox9-/- mouse embryonic stem cells in vitro, using two clones with different targeted mutations. We found that the development of mature and hypertrophic chondrocytes is completely inhibited in the absence of Sox9 confirming that Sox9 is required for the formation of cartilage. In contrast, Sox9+/- mouse embryonic stem cells showed continuous but reduced differentiation into mature chondrocytes. Interestingly, the formation of early chondrogenic condensations expressing characteristic marker genes such as scleraxis, Sox5 and Sox6 was not inhibited in the absence of Sox9 in vitro. Thus, we propose that the earliest step of chondrogenesis could be regulated by a non cell-autonomous function of Sox9.