Published in

American Society for Microbiology, Journal of Clinical Microbiology, 1(51), p. 232-237, 2013

DOI: 10.1128/jcm.01696-12

Links

Tools

Export citation

Search in Google Scholar

Public Health Value of Next-Generation DNA Sequencing of Enterohemorrhagic Escherichia coli Isolates from an Outbreak

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT In 2009, an outbreak of enterohemorrhagic Escherichia coli (EHEC) on an open farm infected 93 persons, and approximately 22% of these individuals developed hemolytic-uremic syndrome (HUS). Genome sequencing was used to investigate outbreak-derived animal and human EHEC isolates. Phylogeny based on the whole-genome sequence was used to place outbreak isolates in the context of the overall E. coli species and the O157:H7 sequence type 11 (ST11) subgroup. Four informative single nucleotide polymorphisms (SNPs) were identified and used to design an assay to type 122 other outbreak isolates. The SNP phylogeny demonstrated that the outbreak strain was from a lineage distinct from previously reported O157:H7 ST11 EHEC and was not a member of the hypervirulent clade 8. The strain harbored determinants for two Stx2 verotoxins and other putative virulence factors. When linked to the epidemiological information, the sequence data indicate that gross contamination of a single outbreak strain occurred across the farm prior to the first clinical report of HUS. The most likely explanation for these results is that a single successful strain of EHEC spread from a single introduction through the farm by clonal expansion and that contamination of the environment (including the possible colonization of several animals) led ultimately to human cases.