Published in

American Chemical Society, Nano Letters, 4(9), p. 1382-1385, 2009

DOI: 10.1021/nl803030e

Links

Tools

Export citation

Search in Google Scholar

Confinement Spectroscopy: Probing Single DNA Molecules with Tapered Nanochannels

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We demonstrate a confinement spectroscopy technique capable of probing small conformational changes of unanchored single DNA molecules in a manner analogous to force spectroscopy, in the regime corresponding to femtonewton forces. In contrast to force spectroscopy, various structural forms of DNA can easily be probed, as indicated by experiments on linear and circular DNA. The extension of circular DNA is found to scale according to the de Gennes exponent, unlike for linear DNA.