Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 28(117), p. 8408-8421, 2013

DOI: 10.1021/jp404160y

Links

Tools

Export citation

Search in Google Scholar

Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models

Journal article published in 2013 by Lei Xu, Huiyong Sun, Youyong Li, Junmei Wang ORCID, Tingjun Hou
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Here, we systematically investigated how the force fields and the partial charge models for ligands affect the ranking performance of the binding free energies predicted by the Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) approaches. A total of 46 small molecules targeted to 5 different protein receptors were employed to test the following issues: (1) the impact of five AMBER force fields (ff99, ff99SB, ff99SB-ILDN, ff03 and ff12SB) on the performance of MM/GBSA, (2) the influence of the timescale of molecular dynamics (MD) simulations on the performance of MM/GBSA with different force fields, (3) the impact of five AMBER force fields on the performance of MM/PBSA, and (4) the impact of four different charge models (RESP, ESP, AM1-BCC and Gasteiger) for small molecules on the performance of MM/PBSA or MM/GBSA. Based on our simulation results, the following important conclusions can be obtained: (1) for short time-scale MD simulations (1 ns or less), the ff03 force field gives the best predictions by both MM/GBSA and MM/PBSA; (2) for middle time-scale MD simulations (2~4 ns), MM/GBSA based on the ff99 force field yields the best predictions, while MM/PBSA based on the ff99SB force field does the best; however, longer MD simulations, for example, 5 ns or more, may not be quite necessary; (3) for most cases, MM/PBSA with the Tan's parameters shows better ranking capability than MM/GBSA (GBOBC1); (4) the RESP charges show the best performance for both MM/PBSA and MM/GBSA, and the AM1-BCC and ESP charges can also give fairly satisfactory predictions. Our results provide useful guidance for the practical applications of the MM/GBSA and MM/PBSA approaches.