Published in

Elsevier, European Polymer Journal, (70), p. 247-261, 2015

DOI: 10.1016/j.eurpolymj.2015.06.031

Links

Tools

Export citation

Search in Google Scholar

Novel silicon microparticles to improve sunlight stability of raw polypropylene

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Oxidation of polyolefins by ultraviolet/visible irradiation is a significant limitation for their use in several technological applications. The use of high-tech additives such as silicon microparticles becomes a compositing strategy that can improve the performance of these materials at long-term service conditions. Silicon particles were added to non-additivated raw polypropylene (PP) prepared by hot melt extrusion and subjected to accelerated sunlight irradiation tests. The stability of thermal properties, mechanical performance and thermal decomposition behaviour of composites was evaluated by differential scanning calorimetry, dynamic mechanical-thermal analysis and thermogravimetry. This paper shows the potential of silicon microparticles to protect PP from degradation during both processing and accelerated sunlight irradiation. The addition of polydisperse silicon microparticles to the raw polypropylene preserved the appearance and improved the thermal behaviour, mechanical properties and thermal stability. It was found that silicon particles at 5 wt% provided a suitable protection of raw non-additivated PP against sunlight irradiation.