Published in

American Chemical Society, Journal of Organic Chemistry, 12(72), p. 4313-4322, 2007

DOI: 10.1021/jo062672z

Links

Tools

Export citation

Search in Google Scholar

Solvent-Free Thermal and Microwave-Assisted [3 + 2] Cycloadditions between Stabilized Azomethine Ylides and Nitrostyrenes. An Experimental and Theoretical Study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The stereochemical outcomes observed in the thermal and microwave-assisted [3 + 2] cycloaddition between stabilized azomethine ylides and nitrostyrenes have been analyzed using experimental and computational approaches. It has been observed that, in the absence of solvent, three stereoisomers are formed, both under classical heating conditions and under microwave irradiation. This result contrasts with that observed in solution under classical thermal conditions. The 4-nitropyrrolidines obtained in this way can be aromatized under further microwave irradiation to yield mixtures of pyrroles and 4-nitropyrroles. It is found that ground state cycloadditions between imines and nitrostyrenes take place by three-step mechanisms. The first step involves enolization of the starting imine, and this is followed by a pseudopericyclic 10-electron [1.4]-hydrogen shift. Finally, the cycloaddition takes place by a relatively asynchronous aromatic six-electron supra-supra thermal mechanism.