Published in

American Association for Cancer Research, Molecular Cancer Research, 1(10), p. 52-65, 2012

DOI: 10.1158/1541-7786.mcr-11-0524

Links

Tools

Export citation

Search in Google Scholar

STEAP1 is associated with the invasive and oxidative stress phenotype of Ewing tumors.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Ewing tumors comprise the second most common type of bone-associated cancer in children and are characterized by oncogenic EWS/FLI1 fusion proteins and early metastasis. Compelling evidence suggests that elevated levels of intracellular oxidative stress contribute to enhanced aggressiveness of numerous cancers, possibly including Ewing tumors. Using comprehensive microarray analyses and RNA interference, we identified the six-transmembrane epithelial antigen of the prostate 1 (STEAP1)—a membrane-bound mesenchymal stem cell marker of unknown function—as a highly expressed protein in Ewing tumors compared with benign tissues and show its regulation by EWS/FLI1. In addition, we show that STEAP1 knockdown reduces Ewing tumor proliferation, anchorage-independent colony formation as well as invasion in vitro and decreases growth and metastasis of Ewing tumor xenografts in vivo. Moreover, transcriptome and proteome analyses as well as functional studies revealed that STEAP1 expression correlates with oxidative stress responses and elevated levels of reactive oxygen species that in turn are able to regulate redox-sensitive and proinvasive genes. In synopsis, our data suggest that STEAP1 is associated with the invasive behavior and oxidative stress phenotype of Ewing tumors and point to a hitherto unanticipated oncogenic function of STEAP1. Mol Cancer Res; 10(1); 52–65. ©2011 AACR.