Published in

Wiley, Advanced Functional Materials, 19(23), p. 2342-2342, 2013

DOI: 10.1002/adfm.201370092

Wiley, Advanced Functional Materials, 19(23), p. 2357-2367, 2012

DOI: 10.1002/adfm.201202729

Links

Tools

Export citation

Search in Google Scholar

Thin‐Wall Assembled SnO<sub>2</sub> Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled‐Breath‐Sensing Properties for the Diagnosis of Diabetes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hierarchical SnO2 fibers assembled from wrinkled thin tubes are synthesized by controlling the microphase separation between tin precursors and polymers, by varying flow rates during electrospinning and a subsequent heat treatment. The inner and outer SnO2 tubes have a number of elongated open pores ranging from 10 nm to 500 nm in length along the fiber direction, enabling fast transport of gas molecules to the entire thin-walled sensing layers. These features admit exhaled gases such as acetone and toluene, which are markers used for the diagnosis of diabetes and lung cancer. The open tubular structures facilitated the uniform coating of catalytic Pt nanoparticles onto the inner SnO2 layers. Highly porous SnO2 fibers synthesized at a high flow rate show five-fold higher acetone responses than densely packed SnO2 fibers synthesized at a low flow rate. Interestingly, thin-wall assembled SnO2 fibers functionalized by Pt particles exhibit a dramatically shortened gas response time compared to that of un-doped SnO2 fibers, even at low acetone concentrations. Moreover, Pt-decorated SnO2 fibers significantly enhance toluene response. These results demonstrate the novel and practical feasibility of thin-wall assembled metal oxide based breath sensors for the accurate diagnosis of diabetes and potential detection of lung cancer.