Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 16(112), p. 4859-4864, 2008

DOI: 10.1021/jp800870p

Links

Tools

Export citation

Search in Google Scholar

How Chromophore Shape Determines the Spectroscopy of Phenylene−Vinylenes: Origin of Spectral Broadening in the Absence of Aggregation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Single oligo(phenylene-vinylene) molecules constitute model systems of chromophores in disordered conjugated polymers and can elucidate how the actual conformation of an individual chromophore, rather than that of an overall polymer chain, controls its photophysics. Single oligomers and polymer chains display the same range of spectral properties. Even heptamers support pi-electron conjugation across approximately 80 degrees curvature, as revealed by the polarization anisotropy in excitation and supported by quantum chemical calculations. As the chain becomes more deformed, the spectral linewidth at low temperatures, often interpreted as a sign of aggregation, increases up to 30-fold due to a reduction in photophysical stability of the molecule and an increase in random spectral fluctuations. The conclusions aid the interpretation of results from single-chain Stark spectroscopy in which large static dipoles were only observed in the case of narrow transition lines. These narrow transitions originate from extended chromophores in which the dipoles induced by backbone substituents do not cancel out. Chromophores in conjugated polymers are often thought of as individual linear transition dipoles, the sum of which make up the polymer's optical properties. Our results demonstrate that, at least for phenylene-vinylenes, it is the actual shape of the individual chromophore rather than the overall chromophoric arrangement and form of the polymer chain that dominates the spectroscopic properties.