Published in

Elsevier, Fuel, 10(89), p. 2971-2976

DOI: 10.1016/j.fuel.2009.11.024

Links

Tools

Export citation

Search in Google Scholar

X-ray powder diffraction-based method for the determination of the glass content and mineralogy of coal (co)-combustion fly ashes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The relevance of Al-Si glass in a number of fly ash applications, such as use as a pozzolanic material, zeolite synthesis, and geopolymer production, necessitated research towards investigation of methods for an easy and consistent determination of the glass content in this coal (co)-combustionby-products. A glass standard-addition X-ray powder diffraction (XRD)-based method is proposed in this study as an alternative to the non straightforward procedure of conventional methods for determining the amorphous components, mainly by difference of the total mass and the addition of quantified crystalline species. A >99% Al-Si glass slag sample was selected as a standard for glass. A number of glass standard/fly ash mixtures were performed on Fluidized Bed Combustion (FBC) and pulverized coal combustion (PCC) fly ashes and subsequently analyzed by XRD. The method provides results closer to quantitative proportions of the Al-Si amorphous material of this (co)-combustion by-product, with a range of values <3% when compared with those obtained by the conventional Reference Intensity Method (RIM) method, demonstrating suitability and consistence of the procedure. Furthermore, by the proposed method, the requirement of previous determination of the mineral phases of conventional techniques is avoided. Coupled with the easy calculations, this allowed a fast determination of the glass content of (co)-combustion fly ash. The mineralogy of FBC and PCC fly ash was also investigated using the RIM method. The occurrence and proportions of the crystalline components in fly ash are in line with the combustion technology and their inherent operational parameters, especially the (co)-combustion temperature. The FBC fly ash shows the highest content of relic phases from feed coal (quartz, illite, calcite, and feldspars) and lower contents of amorphous components. The PCC fly ash are characterized by the highest proportions of mullite and Al-Si glass and low contents of quartz an other relict phases. The occurrence and distribution of anhydrite and Fe-oxide species appears to be related to the content of Ca and Fe in the feed fuels, showing slightly higher contents in FBC than in PCC fly ash. (c) 2009 Elsevier Ltd. All rights reserved.