Published in

SAGE Publications, Slas Technology, 2(19), p. 137-143, 2014

DOI: 10.1177/2211068213485748

Links

Tools

Export citation

Search in Google Scholar

Acoustofluidic Relay Sequential Trapping and Transporting of Microparticles via Acoustically Excited Oscillating Bubbles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report an on-chip acoustofluidic method for sequential trapping and transporting of microparticles via acoustically oscillating bubbles. The size and location of bubbles were precisely controlled by lithography. When the acoustic waves were turned off, particles followed the streamlines dictated by laminar flow. When the acoustic waves were turned on, particles were attracted to and trapped in a vortex near the surface of bubble. Therefore, particles could move across the microfluidic channel with programmed trajectories. Additionally, a theoretical model based on acoustic radiation force and drag force due to acoustic microstreaming was established to help design this particle-trapping and -transporting system.