Published in

Elsevier, Chemical Engineering Journal, (225), p. 153-163

DOI: 10.1016/j.cej.2013.03.081

Links

Tools

Export citation

Search in Google Scholar

Highly efficient adsorption of Cr(VI) from aqueous solutions by amino-functionalized titanate nanotubes

Journal article published in 2013 by Lei Wang, Wen Liu ORCID, Ting Wang, Jinren Ni
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

For highly efficient removal of Cr(VI) from aqueous solutions, amino-functionalized titanate nanotubes (NH2-TNTs) with excellent adsorption performance have been synthesized by covalently grafting [1-(2-amino-ethyl)-3-aminopropyl]trimethoxysilane (AAPTS) onto protonated titanate nanotubes (HTNTs) with great amounts of surface hydroxyl groups. TEM and XRD results confirmed that the nanotubular morphology and crystal structure of HTNTs and NH2-TNTs were preserved. FTIR spectra demonstrated that AAPTS was covalently bonded on the surface of HTNTs. Batch adsorption experiments showed that pseudo-second-order kinetics model and Langmuir isotherm model fitted the adsorption data very well for both materials, and the Cr(VI) adsorption capacity on NH2-TNTs calculated by Langmuir model was up to 153.85 mg g−1 at initial pH 5.4 and 30 °C, much larger than that on HTNTs (26.60 mg g−1). Moreover, uptake of Cr(VI) ions onto NH2-TNTs could be completed within only 5 min for 95% adsorption of the maximum. Influence of different species of Cr(VI) under varying pH was also considered. FTIR and XPS analysis indicated that Cr(VI) ions were first exchanged with NO3- linked on the positively charged amino groups and then partially reduced to Cr(III). Afterwards, Cr(III) were then totally chelated with amino groups and no Cr(III) was detected in the solution after Cr(VI) adsorption at pH range of 1–12.