Published in

American Chemical Society, ACS Biomaterials Science and Engineering, 7(1), p. 525-538, 2015

DOI: 10.1021/acsbiomaterials.5b00002

Links

Tools

Export citation

Search in Google Scholar

Photoactivable Surface of Natural Poly(3-hydroxybutyrate- co -3-hydroxyvalerate) for Antiadhesion Applications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A green photoinduced method for the modification of a biodegradable and biocompatible polymer, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) has been successfully carried out using two types of monomers with potential antibacterial effects, i.e. 2-[(methacryloyloxy)-ethyl] trimethylammonium chloride (META) and an ampicillin-derived monomer. The photografting process is conducted through a photoinduced free-radical process employing a thiocarbamate-based photoinitiator in an aqueous medium. Under appropriate conditions, radicals are generated from the PHBHV surface, thus initiating the UV-mediated photopolymerization of methacrylate or methylacrylamide-derived monomers from the surface of PHBHV films. The photochemical mechanism of the thiocarbamate photolysis is entirely described by the Electron Spin Resonance / Spin-Trapping technique and Laser Flash Photolysis, and the modified-PHBHV films are extensively characterized by fluorescence experiments, water contact angle and XPS measurements. Finally, a primary investigation is conducted to support the antibacterial property of the new functionalized films against Escherichia coli and Staphylococcus aureus, and their cytocompatibility with NIH-3T3 fibroblastic cells is evaluated.