Published in

Royal Society of Chemistry, RSC Advances, 59(5), p. 48094-48103

DOI: 10.1039/c5ra04452a

Links

Tools

Export citation

Search in Google Scholar

Morphology and properties of silica-based coatings with different functionalities for Fe3O4, ZnO and Al2O3 nanoparticles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A facile single-step method for obtaining 2–3 nm thick silsesquioxane coatings on metal oxide nanoparticles using different carbon-functional silane precursors is presented. Iron oxide nanoparticles 8.5 nm in diameter were used as a model to evaluate the possibilities of forming different uniform carbon-functional coatings, ranging from hydrophobic to hydrophilic in character. Electron microscopy showed that all the coated nanoparticles could be described as core-shell nanoparticles with single Fe3O4 cores and carbon-functional silsesquioxane shells, without any core-free silicone oxide phase. Steric factors strongly influenced the deposited silicon oxide precursors with octyl-, methyl- or aminopropyl functionalities, resulting in coating densities ranging from 260 to 560 kg/m3. The methyl-functional coatings required several layers of silsesquioxane, 3–4, to build up the 2 nm structures, whereas only 1-2 layers were required for silsesquioxane with octyl groups. Pure silica coatings from tetraethoxysilanes were however considerably thicker due to the absence of steric hindrance during deposition, allowing the formation of 5–7 nm coatings of ca. 10 layers. The coating method developed for the iron oxide nanoparticles was generic and successfully transferred and up–scaled 30 and 325 times (by volume) to be applicable to 25 nm ZnO and 45 nm Al2O3 nanoparticles.