Published in

Springer (part of Springer Nature), Journal of Electronic Materials, 7(44), p. 2536-2543

DOI: 10.1007/s11664-015-3806-5

Links

Tools

Export citation

Search in Google Scholar

Study of Optical and Electrical Properties of In2S3:Sn Films Deposited by Spray Pyrolysis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Tin-doped In2S3 films were grown by the chemical spray pyrolysis method using compressed air as a carrier gas. Tin is incorporated in the solution using SnCl4. Structural and optical properties of films were investigated by x-ray diffraction (XRD), absorption, Raman and photoluminescence spectroscopies. Field emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy were used to explore the surface morphology. The properties of In2S3 thin films are influenced by Sn doping. XRD studies revealed that the deposited films were polycrystalline in nature exhibiting cubic structure and oriented preferentially towards (111). According to FESEM, the surface morphology of the films was free of defects. Raman studies showed different peaks related to In2S3 phase and did not show any secondary phases of In-Sn and Sn-S. In2S3:Sn films exhibited transparency over 60–85% in the visible and infrared regions. The optical band gap was found to vary in the range 2.71–2.58 eV for direct transitions. The room temperature photoluminescence (PL) studies revealed two PL bands, centered at 529 nm (band A) and 725 nm (band B). From these results, one can conclude that our material can be used as transmittive windows in low-cost solar cells. The conductance and capacitance characterization at ambient temperature were also investigated and gave interesting physical properties for photovoltaic applications.