Published in

Taylor and Francis Group, Atmosphere-Ocean, 1(53), p. 66-73

DOI: 10.1080/07055900.2013.871499

Links

Tools

Export citation

Search in Google Scholar

Compensating for the Effects of Stray Light in Single-Monochromator Brewer Spectrophotometer Ozone Retrieval

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Spectrometers are designed to isolate particular wavebands and suppress light from wavelengths outside the band of interest. However, a small amount of undesired light will always enter the detector, not through the designed optical path, but through random scattering from the instrument optical components, housing, and dust particles. Every spectrophotometer has stray light coming from outside the nominal measurement waveband. For Dobson spectrophotometers and single monochromator Brewer spectrophotometers, which are basic instruments in the World Meteorological Organization (WMO) ozone and ultraviolet (UV) monitoring network, the error introduced by stray light is substantial when the ozone slant path becomes very large because of high solar zenith angles and a thick ozone layer. These are common conditions during Arctic spring. To study the issue, a long ozone slant path Intercomparison/Calibration campaign for Nordic Brewers and Dobsons was held at Sodankylä 8–24 March 2011 and a follow-up campaign to extend calibrations to shorter ozone slant paths took place at Izaña observatory, Tenerife, between 28 October and 18 November 2011. These campaigns were part of the Committee on Earth Observation Satellites (CEOS) Intercalibration of Ground-based Spectrometers and Lidars project funded by the European Space Agency (ESA), intended to permit the homogenization of ozone data from the European ozone ground-truthing network. During the active intercomparison periods, measurements were taken only when good conditions for sun or moon observations existed. Laboratory measurements using calibration lamps and helium-cadmium (HeCd) lasers were an essential part of both campaigns. The campaigns produced a high-quality database of total ozone and UV measurements and an accurate, up-to-date calibration and characterization of participating Brewers and Dobsons against the European standard instruments from the Regional Dobson Calibration Centre-Europe (RDCC-E) and the Regional Brewer Calibration Centre-Europe (RBCC-E). In the present work we focus on single monochromator Brewers and present a physics-based method to compensate for the stray-light effects in ozone retrieval using laboratory characterizations and radiative transfer modelling. The method was tested with independent data from the campaign.