Dissemin is shutting down on January 1st, 2025

Published in

Annual Reviews, Annual Review of Neuroscience, 1(27), p. 723-749, 2004

DOI: 10.1146/annurev.neuro.27.070203.144244

Links

Tools

Export citation

Search in Google Scholar

Unraveling the mechanisms involved in motor neuron degeneration in ALS

Journal article published in 2004 by Lucie I. Bruijn, Timothy M. Miller, Don W. Cleveland ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

▪ Abstract Although Charcot described amyotrophic lateral sclerosis (ALS) more than 130 years ago, the mechanism underlying the characteristic selective degeneration and death of motor neurons in this common adult motor neuron disease has remained a mystery. There is no effective remedy for this progressive, fatal disorder. Modern genetics has now identified mutations in one gene [Cu/Zn superoxide dismutase (SOD1)] as a primary cause and implicated others [encoding neurofilaments, cytoplasmic dynein and its processivity factor dynactin, and vascular endothelial growth factor (VEGF)] as contributors to, or causes of, motor neuron diseases. These insights have enabled development of model systems to test hypotheses of disease mechanism and potential therapies. Along with errors in the handling of synaptic glutamate and the potential excitotoxic response this provokes, these model systems highlight the involvement of nonneuronal cells in disease progression and provide new therapeutic strategies.