Published in

Cambridge University Press, Microscopy and Microanalysis, S3(14), p. 5-6, 2008

DOI: 10.1017/s1431927608089216

Links

Tools

Export citation

Search in Google Scholar

Nonstoichiometry Effects in SrTiO3 Ceramics Assessed by Transmission Electron Microscopy

Journal article published in 2008 by L. Amaral ORCID, A. M. R. Senos, P. M. Vilarinho
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Strontium titanate (SrTiO3, ST) has a perovskite type structure that is cubic at room temperature, but transforms into a tetragonal one at 105K. At very low temperatures, ST exhibits an extremely large dielectric permittivity and piezoelectric and superconducting characteristics. ST finds applications in tunable microwave devices, due to a dependence of its dielectric response on the electric field and low microwave losses. ST electrical properties are strongly dependent on grain boundaries features and directly influenced by grain size distribution. It was found in our previous studies that a small variation in the stoichiometry of ST has a significant effect on the grain size of the sintered ceramic and related electrical properties: increased grain size and dielectric permittivity values have been reported for Ti excess compositions whereas Sr excess caused a decrease of grain size and of the dielectric permittivity. The tailoring of the dielectric properties by small non-stoichiometric variations in ST needs, however, a full understanding of its effects on the microstructure, phases structure and on the structure / composition of the grain boundaries.