Published in

American Chemical Society, The Journal of Physical Chemistry A, 48(114), p. 12739-12754, 2010

DOI: 10.1021/jp107557p

Links

Tools

Export citation

Search in Google Scholar

Noncovalent Interactions in Extended Systems Described by the Effective Fragment Potential Method: Theory and Application to Nucleobase Oligomers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The implementation of the Effective Fragment Potential (EFP) method within the Q-Chem electronic structure package is presented. The EFP method is used to study non-covalent π – π and hydrogen-bonding interactions in DNA strands. Since EFP is a computationally inexpensive alternative to high-level ab initio calculations, it is possible to go beyond the dimers of nucleic acid bases and to investigate the asymptotic behavior of different components of the total interaction energy. The calculations demonstrated that the dispersion energy is a leading component in π-stacked oligomers of all sizes. Exchange-repulsion energy also plays an important role. The contribution of polarization is small in these systems, whereas the magnitude of electrostatics varies. Pairwise fragment interactions (i.e., the sum of dimer binding energies) were found to be a good approximation for the oligomer energy.