Published in

American Chemical Society, Nano Letters, 9(8), p. 2867-2871, 2008

DOI: 10.1021/nl8016187

Links

Tools

Export citation

Search in Google Scholar

Permeable Silica Shell through Surface-Protected Etching

Journal article published in 2008 by Qiao Zhang ORCID, Tierui Zhang, Jianping Ge, Yadong Yin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We describe a "surface-protected etching" strategy that allows convenient conversion of sol-gel derived silica into porous structures. Poly(vinyl pyrrolidone) is used to protect the near surface layer, and NaOH is used to selectively etch the interior of the silica spheres. Etching initially yields porous structures and eventually removes the core to leave behind hollow silica spheres with porous shells. This strategy is useful for constructing core-shell systems where active nanomaterials are embedded in silica shell for enhanced stability against aggregation. We experimentally demonstrate use of the surface-protected etching approach to create openings on silica shells; these openings allow dissolved chemical species to reach embedded catalytic particles to be chemically transformed while the porous shells continue to act as effective barriers against aggregation and loss of activity of the core particles. We also show that, by controlling the extent of etching, it is possible to control the permeation rate of the chemical species through the shells.