Published in

Inter Research, Marine Ecology Progress Series, (381), p. 139-155

DOI: 10.3354/meps07939

Links

Tools

Export citation

Search in Google Scholar

Episodic meteorological and nutrient-load events as drivers of coastal planktonic ecosystem dynamics: A time-series analysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In temperate coastal zones, episodic meteorological forcing can have a strong impact on the classical seasonal phytoplankton succession. Episodes of continental runoff and wind storms involve nutrient enrichment and turbulence, 2 factors that can promote primary production and alter the planktonic community species composition and size structure. We determined the joint influence of these 2 variables on the osmotrophic plankton of an oligotrophic NW Mediterranean open bay. We used an 8 yr long time series of monthly physical, chemical and biological water-column parameters, and we looked for correlations between these and several meteorological and physical high-frequency time series through cross-correlation analyses. Influence of river runoff in this particular location was found to be very important for phytoplankton dynamics, whereas no immediate response of bacterioplankton was detected. Resuspension events caused by waves had a secondary importance. Cross correlations allowed defining a sequence of responses to these types of forcing, from changes in water turbidity and salinity, to increases in phytoplankton and bacteria abundances through nutrient enrichments. The maximum response of the ecosystem in terms of chlorophyll a concentration lagged nutrient enrichment events by about 1 wk. A more detailed analysis was performed between June 2003 and June 2004, a period characterised by an intense drought in summer and by 6 strong meteorological events afterwards. The increase in the frequency of meteorological events during this period drove the system from heterotrophy to autotrophy. Our data stress the importance of episodic meteorological events in coastal planktonic communities.