Published in

American Chemical Society, ACS Applied Materials and Interfaces, 20(7), p. 10702-10709, 2015

DOI: 10.1021/acsami.5b01367

Links

Tools

Export citation

Search in Google Scholar

Strong and Electrically Conductive Graphene Based Composite Fibers and Laminates

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Graphene presents an ideal candidate for lightweight, high strength composite materials given its superior mechanical properties (specific strength of 130GPa and stiffness of 1 TPa). To date, easily scalable graphene-like materials in a form of separated flakes (exfoliated graphene, graphene oxide and reduced graphene oxide) have been investigated as candidates for large-scale applications such as material reinforcement. These graphene-like materials do not fully exhibit all the capabilities of graphene in composite materials. In the current study, we show that macro (2''x 2'') graphene laminates and fibers can be produced using large continuous sheets of single layer graphene grown by chemical vapor deposition (CVD). The resulting composite structures have potential to outperform the current state of the art composite materials in both mechanical properties and electrical conductivities (>8 S/cm with only 0.13% volumetric graphene loading and 5·10(3) S/cm for pure graphene fibers) with estimated graphene contribution >10 GPa in strength and 1TPa in stiffness.