Published in

Elsevier, Planetary and Space Science, (106), p. 142-147, 2015

DOI: 10.1016/j.pss.2014.12.018

Links

Tools

Export citation

Search in Google Scholar

The spatial distribution of molecular Hydrogen in the lunar atmosphere—New results

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The measurements carried out by the Chandra's Altitudinal Composition Explorer (CHACE) onboard the Moon Impact Probe (MIP) of Chandrayaan I mission is used to obtain information on the 2-D distribution of the lunar atmospheric H2 by a novel approach that makes use of the basic fact that the Moon has a Surface Boundary Exosphere (SBE).These are the ‘first’ daytime in situ measurements of lunar H2 covering the 20°S to 88°S latitude region centered ~14°E longitude. A critical examination of the observed spatial features of the surface number density of H2 vis-à-vis the surface topography delineated from the Lunar Laser Ranging Instrument (LLRI) in the main orbiter Chandrayaan –I, indicates that that lunar surface process may be important in introducing small scale variations in the H2 number density. Another constituent which exhibited spatial variation in the observed partial pressure is 40Ar and it was hypothesized that it is indicative of the spatial heterogeneity in the radiogenic activity of the Lunar interior (Sridharan et al., 2013a). The absolute number density at the surface and also the latitude/altitude variation of the densities that are reported for the first time, highlight the complexities of the sunlit lunar atmosphere.