Published in

2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO)

DOI: 10.1109/nano.2012.6321985

Links

Tools

Export citation

Search in Google Scholar

Contact resistance of low-temperature carbon nanotube vertical interconnects

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The electrical contact resistance and length dependant resistance of vertically aligned carbon nanotubes (CNT) grown at 500 °C with high tube density (1011 cm-2) are investigated by measuring samples with different CNT lengths. Cross-sectional imaging revealed that the CNT tips are well embedded over a length of several hundred nm. The determined contact resistance of 18 kΩ is low, which is attributed to a combination of CNT tip embedding and tip growth mechanism. When the CNT mean free path determined by Raman spectroscopy is compared with that obtained from the electrical measurements, it shows that multiple walls are conducting in parallel per CNT.