Published in

IOP Publishing, Journal of Physics D: Applied Physics, 48(45), p. 485102, 2012

DOI: 10.1088/0022-3727/45/48/485102

Links

Tools

Export citation

Search in Google Scholar

Mn-doped TiO2thin films with significantly improved optical and electrical properties

Journal article published in 2012 by Liu Lu, Xiaohong Xia, J. K. Luo, G. Shao ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract TiO2 thin films with various Mn doping contents were fabricated by reactive magnetron sputtering deposition at 550 °C and their structural, optical and electrical properties were characterized. All films were made of densely packed columnar grains with a fibrous texture along the normal direction of the substrate. The as-deposited structure in the pure TiO2 film consisted of anatase grains with the [1 0 1] texture. Mn incorporation stabilized the rutile phase and induced lattice contraction in the [1 0 0] direction. The texture in the Mn-doped films changed from [1 1 0] to [2 0 0] with increasing Mn content. The incorporation of Mn in the TiO2 lattice introduced intermediate bands into its narrowed forbidden gap, leading to remarkable red-shifts in the optical absorption edges, together with significantly improved electrical conductivity of the thin films. Hall measurement showed that the incorporation of Mn-induced p-type conductivity, with hole mobility in heavily doped TiO2 (∼40% Mn) being about an order higher than electron mobility in single-crystal rutile TiO2. Oxygen vacancies, on the other hand, interacted with substitutional Mn atoms to reduce its effect on optical and electrical properties.