Published in

American Association of Immunologists, The Journal of Immunology, 3(191), p. 1210-1219, 2013

DOI: 10.4049/jimmunol.1203462

Links

Tools

Export citation

Search in Google Scholar

Increased ID2 Levels in Adult Precursor B Cells as Compared with Children Is Associated with Impaired Ig Locus Contraction and Decreased Bone Marrow Output

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Precursor B cell production from bone marrow in mice and humans declines with age. Because the mechanisms behind are still unknown, we studied five precursor B cell subsets (ProB, PreBI, PreBII large, PreBII small, immature B) and their differentiation-stage characteristic gene expression profiles in healthy individual toddlers and middle-aged adults. Notably, the composition of the precursor B cell compartment did not change with age. The expression levels of several transcripts encoding V(D)J recombination factors were decreased in adults as compared with children: RAG1 expression was significantly reduced in ProB cells, and DNA-PKcs, Ku80, and XRCC4 were decreased in PreBI cells. In contrast, TdT was 3-fold upregulated in immature B cells of adults. Still, N-nucleotides, P-nucleotides, and deletions were similar for IGH and IGK junctions between children and adults. PreBII large cells in adults, but not in children, showed highly upregulated expression of the differentiation inhibitor, inhibitor of DNA binding 2 (ID2), in absence of changes in expression of the ID2-binding partner E2A. Further, we identified impaired Ig locus contraction in adult precursor B cells as a likely mechanism by which ID2-mediated blocking of E2A function results in reduced bone marrow B cell output in adults. The reduced B cell production was not compensated by increased proliferation in adult immature B cells, despite increased Ki67 expression. These findings demonstrate distinct regulatory mechanisms in B cell differentiation between adults and children with a central role for transcriptional regulation of ID2.