Published in

American Chemical Society, ACS Applied Materials and Interfaces, 19(7), p. 10525-10533, 2015

DOI: 10.1021/acsami.5b02063

Links

Tools

Export citation

Search in Google Scholar

Growth of Highly Conductive Ga-Doped ZnO Nanoneedles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The molecular beam epitaxy growth of highly-degenerate Ga-doped ZnO (GaZnO) nanoneedles (NNs) based on the vapor-liquid-solid (VLS) growth mode using Ag nanoparticles (NPs) as the growth catalyst is demonstrated. It is shown that when the growth substrate temperature is sufficiently high, a portion of an Ag NP can be melted for serving as the catalyst to precipitate GaZnO on the residual Ag NP and form a GaZnO NN. Record-low turn-on and threshold electric fields in the field emission test of the grown GaZnO NNs are observed. Also, a record-high field enhancement factor in field emission is calibrated. Such superior field emission performances are attributed to a few factors, including (1) the low work function and high conductivity of the grown GaZnO NNs due to highly degenerate Ga doping, (2) the sharp-pointed geometry of the vertically aligned GaZnO NNs, (3) the Ag doping in VLS precipitation of GaZnO for further reducing NN resistivity, and (4) the residual small Ag NP at the NN tip for making the tip even sharper and tip conductivity even higher.