Published in

Elsevier, Physics of the Earth and Planetary Interiors, 3-4(180), p. 148-153

DOI: 10.1016/j.pepi.2010.02.002

Links

Tools

Export citation

Search in Google Scholar

Effect of composition, structure, and spin state on the thermal conductivity of the Earth's lower mantle

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The change in electronic structure of iron at high pressures to spin-paired states in ferropericlase, silicate perovskite, and post-perovskite may have a profound influence on the thermal conductivity of the lower mantle. Here, we present optical absorption data for lower mantle minerals to assess the effect of composition (including iron oxidation state), structure, and iron spin state on radiative heat transfer. We confirm that the presence of ferric iron in ferropericlase strongly affects the optical properties, while the effect of the spin-pairing transition may be more secondary. We also show that post-perovskite exhibits larger optical absorption in the near infrared and visible spectral ranges than perovskite which may have a profound effect on the dynamics the lowermost mantle. We present preliminary results from measurements of the phonon thermal conductivity of perovskite at 125 GPa using a pulsed laser heating technique. The available data suggest a larger value than what previously estimated, although the uncertainty is large.