Published in

Elsevier, European Journal of Pharmaceutics and Biopharmaceutics, 1(52), p. 65-73

DOI: 10.1016/s0939-6411(01)00144-8

Links

Tools

Export citation

Search in Google Scholar

Complexation of phenytoin with some hydrophilic cyclodextrins: effect on aqueous solubility, dissolution rate, and anticonvulsant activity in mice

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The main objective of this study was to evaluate the influence of hydroxypropylated beta- and gamma-cyclodextrins and Me-beta-cyclodextrin (HP-beta-CD, HP-gamma-CD, and Me-beta-CD, respectively) on the dissolution rate and bioavailability of the antiepileptic agent, phenytoin (DPH). The corresponding solid complexes were prepared by a freeze-drying method and characterized by infrared spectroscopy, X-ray powder diffraction, and differential scanning calorimetry studies. Evidence of inclusion complex formation in the case of HP-beta-CD was obtained by (1)H- and (13)C-nuclear magnetic resonance spectroscopy. Drug solubility and dissolution rate in 0.05 M potassium phosphate buffer (pH 6) were notably improved by employing the beta-CDs. Thus a 45% w/v HP-beta-CD or Me-beta-CD solution gave rise to an increase of dissolved drug of 420- and 578-fold, respectively. The Q(10) (i.e. percentage of dissolved DPH at 10 min) was 5.2% for the pure drug and 93, 98, and 96% for DPH/HP-beta-CD, DPH/HP-gamma-CD, and DPH/Me-beta-CD complexes, respectively. Moreover, it was found that in the maximal electroshock seizure test in mice the DPH/Me-beta-CD complex exhibited anticonvulsant activity similar to DPH sodium salt (NaDPH).