Published in

Hindawi, Advances in Meteorology, (2010), p. 1-11, 2010

DOI: 10.1155/2010/167436

Links

Tools

Export citation

Search in Google Scholar

Sensitivity Study of Four Land Surface Schemes in the WRF Model

Journal article published in 2010 by Jin Jiming, Norman L. Miller, Nicole-Jeanne Schlegel ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Weather Research and Forecasting (WRF) model version 3.0 developed by the National Center for Atmospheric Research (NCAR) includes three land surface schemes: the simple soil thermal diffusion (STD) scheme, the Noah scheme, and the Rapid Update Cycle (RUC) scheme. We have recently coupled the sophisticated NCAR Community Land Model version 3 (CLM3) into WRF to better characterize land surface processes. Among these four land surface schemes, the STD scheme is the simplest in both structure and process physics. The Noah and RUC schemes are at the intermediate level of complexity. CLM3 includes the most sophisticated snow, soil, and vegetation physics among these land surface schemes. WRF simulations with all four land surface schemes over the western United States (WUS) were carried out for the 1 October 1995 through 30 September 1996. The results show that land surface processes strongly affect temperature simulations over the (WUS). As compared to observations, WRF-CLM3 with the highest complexity level significantly improves temperature simulations, except for the wintertime maximum temperature. Precipitation is dramatically overestimated by WRF with all four land surface schemes over the (WUS) analyzed in this study and does not show a close relationship with land surface processes.