Published in

Wiley, British Journal of Pharmacology, 1(77), p. 177-184, 1982

DOI: 10.1111/j.1476-5381.1982.tb09284.x

Links

Tools

Export citation

Search in Google Scholar

A study of α1-adrenoceptors in rat renal cortex: comparison of [3H] prazosin binding with the α1-adrenoceptor modulating gluconeogenesis under physiological conditions

Journal article published in 1982 by G. A. McPHERSON, R. J. Summers ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

1 A comparison has been made of the alpha 1-adrenoceptor controlling gluconeogenesis in tubules from rat renal cortex and [3H]-prazosin binding in membranes prepared from the same tissue under physiological conditions. 2 In renal tubules the alpha-adrenoceptor agonists, oxymetazoline, (--)-noradrenaline, (--)-alpha-methylnoradrenaline and (--)-phenylephrine, stimulated gluconeogenesis from pyruvate. Oxymetazoline was the most potent agonist (EC50 15.7 nM) but produced only 61% of the maximum response elicited by (--)-noradrenaline. 3 The alpha-adrenoceptor antagonists, BE2254, prazosin, indoramin and phentolamine inhibited (--)-noradrenaline-mediated increases in gluconeogenesis. The alpha 1-adrenoceptor selective compounds, BE2254 and prazosin, were the most effective antagonists with KB values of 0.74 and 1.47 nM respectively. 4 [3H]-prazosin binding to membranes prepared from rat renal cortex in physiological saline at 37 degrees C was best described by a two site model. High affinity, but not low affinity sites had characteristics consistent with alpha-adrenoceptors. 5 High affinity [3H]-prazosin binding could be completely displaced by the alpha-adrenoceptor agonists, oxymetazoline, (--)-noradrenaline, (--)-phenylephrine, and (--)-alpha-methylnoradrenaline. Slope factors for the displacement curves were all significantly less than unity. The concentrations of agonists required to displace [3H]-prazosin binding were markedly higher than those required to stimulate gluconeogenesis. 6 High-affinity [3H]-prazosin binding was also displaced by the alpha-adrenoceptor antagonists, prazosin, BE2254, phentolamine and indoramin. Slope factors for the displacement curves were close to unity. Ki values calculated from the binding experiments were very similar to KB values obtained in the gluconeogenesis studies. These results suggest that in rat renal cortex the alpha 1-adrenoceptor labelled by [3H]-prazosin is probably that which stimulates gluconeogenesis.