Published in

American Chemical Society, The Journal of Physical Chemistry A, 52(113), p. 14670-14680, 2009

DOI: 10.1021/jp904512r

Links

Tools

Export citation

Search in Google Scholar

Cold Collisions of OH(2Π) Molecules with He Atoms in External Fields†

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present rigorous quantum calculations for low-temperature collisions of OH((2)Pi) molecules with He atoms in the presence of external electric and magnetic fields. We show that electric fields of less than 15 kV/cm can be used to enhance the probability for Stark relaxation in collisions of OH (F(1), J = 3/2, M = 3/2, f) molecules by 3 orders of magnitude. The inelastic cross sections display a pronounced resonance structure as a function of the electric field strength. We find that collisions of rotationally excited OH molecules become less sensitive to electric fields with increasing rotational excitation. The calculated total cross sections for (4)He-OH are dominated by elastic scattering, increase monotonically with decreasing collision energy, and show no rapid variations near thresholds, at variance with recent experimental observations (Sawyer et al. Phys. Rev. Lett. 2008, 101, 203203).