Published in

American Chemical Society, Journal of the American Chemical Society, 1(137), p. 210-218, 2014

DOI: 10.1021/ja5089327

Links

Tools

Export citation

Search in Google Scholar

Conformational Transition of a Hairpin Structure to G-Quadruplex within the WNT1 Gene Promoter

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The role of G-quadruplexes (G4s) in biological systems has been widely studied. It is found that they have an important function in gene transcription and regulation. In this work, we have identified two topologies of hairpin and G4 structures formed by a native G-rich sequence (WT22: 5'-GGGCCACCGGGCAGGGGGCGGG-3') from the WNT1 promoter region using nuclear magnetic resonance (NMR) spectroscopy. With the help of site-specific isotope labeling, the topologies of these two structures are unambiguously characterized. Circular dichroism and NMR results are analyzed to determine the kinetics associated with the potassium ion-induced hairpin-to-G4 transition, which is very slow-on the time scale of 4800 s-compared to the previously reported folding kinetics of G4 formation. In addition, the free energies of the unfolding of these two structures are obtained using differential scanning calorimetry. Combining the kinetic and thermodynamic data, we have established the free energy landscape of this two-state folding system. Considering that similar conformational change may exist in other native G-rich sequences, this work highlights an important hairpin to G4 conformational transition which can be used in manipulation of gene regulation or ligand modulation in vivo. ; 生物化學暨分子生物學科暨研究所 ; 醫學院 ; 期刊論文