Dissemin is shutting down on January 1st, 2025

Published in

Portland Press, Biochemical Journal, 3(321), p. 819-827, 1997

DOI: 10.1042/bj3210819

Links

Tools

Export citation

Search in Google Scholar

Identification of cell adhesive active sites in the N-terminal domain of thrombospondin-1

Journal article published in 1997 by Philippe Clezardin ORCID, Jack Lawler, Jean Amiral, Gérard Quentin, Pierre Delmas
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Using a series of fusion proteins that span almost all of the thrombospondin-1 (TSP-1) molecule, we observed in this study that Chinese hamster ovary (CHO) K1 cells strongly attached to the N-terminus but not to the other domains of TSP-1 (e.g. the C-terminus, and type 1, type 2 and type 3 repeats). In addition, attachment to the N-terminus of CHO S745 cells defective in cell-surface glycosaminoglycans (GAGs) was decreased by 47% compared with that observed with CHO K1 cells, indicating the presence of GAG-dependent cell adhesive sites. With the aim of identifying these cell adhesive sites, a series of synthetic peptides, overlapping heparin-binding sequences ARKGSGRR (residues 22Ő29), MKKTRG (residues 79Ő84) and TRDLASIARLRIAKGVNDNF (residues 170Ő189), were synthesized and tested for their ability to support CHO cell attachment. Using both centrifugation and cell-attachment assays, MKKTRG-containing peptides promoted CHO K1 cell adhesion, while ARKGSGRR-containing peptides and peptide TRDLASIARLRIAKGVNDNF did not. CHO S745 cell attachment to MKKTRG-containing peptides was partially decreased. A 36% decrease in CHO K1 cell attachment to the N-terminus was also observed when the heparin-binding consensus sequence KKTR was mutated to QNTR. In addition, peptide MKKTRG partially inhibited (25% inhibition) CHO K1 cell attachment to the N-terminus. However, peptide MKKTRG was not sufficient to fully promote cell attachment to the N-terminus of TSP-1. Peptides VDAVRTEKGFLLLASLRQ and TLLALERKDHS also supported CHO K1 cell attachment in a GAG-dependent and -independent manner respectively. Moreover, CHO K1 cell attachment to MKKTRG was found to be markedly enhanced when flanked with the sequences VDAVRTEKGFLLLASLRQ and TLLALERKDHS. Peptide VDAVRTEKGFLLLASLRQMKKTRG nearly abolished (98% inhibition) CHO K1 cell attachment to the N-terminus, while peptides MKKTRG, MKKTRGTLLALERKDHS and VDAVRTEKGFLLLASLRQ had only a moderate inhibitory effect (25, 27 and 53% inhibition respectively). These data indicate that the sequence VDAVRTEKGFLLLASLRQMKKTRGTLLALERKDHS (residues 60Ő94) constitutes a GAG-dependent cell adhesive site in the N-terminus of TSP-1. Moreover, a GAG-independent site, encompassing residues 189Ő200 (FQGVLQNVRFVF), has been identified. These two adhesive sites supported the attachment of a wide variety of cells (human breast carcinoma, melanoma and osteosarcoma cells), and a high degree of sequence homology was found between TSP-1 and TSP-2 between residues 60 and 94 (48% identity) and 189Ő200 (67% identity), further suggesting the functional importance of these two cell adhesive sites in the N-terminus of TSP-1.