Published in

Wiley, Journal of Comparative Neurology, 1(476), p. 103-111

DOI: 10.1002/cne.20208

Links

Tools

Export citation

Search in Google Scholar

OFF-cholinergic-pathway-selective localization of P2X2 purinoceptors in the mouse retina

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It is known that, in the retina, extracellular adenosine triphosphate (ATP) inhibits acetylcholine (ACh) release from cholinergic neurons, but the types of purinoceptors on cholinergic neurons have not been examined. In the present work, we immunohistochemically examined the distribution of the purinoceptors P2X1, P2X2, P2X4, and P2X7 in relation to the cholinergic system of the retina in wild-type mice and transgenic mice expressing green fluorescent protein (GFP). Immunoreactivity for P2X2 was very strong in sublamina a of the inner plexiform layer but very weak in sublamina b of the inner plexiform layer of the retina. Immunoreactivity for P2X2 was colocalized with that for choline acetyltransferase (ChAT). When transgenic mice were treated with the immunotoxin-mediated cell-targeting technology to ablate cholinergic amacrine cells selectively, immunoreactivity for P2X2 and the signals for GFP disappeared in parallel and selectively in the OFF pathway. The distribution of immunoreactivity for P2X1, P2X4, and P2X7 differed from that of ChAT immunoreactivity. The selective distribution of P2X2 purinergic receptors in OFF-type cholinergic amacrine cells indicates that the P2X2 purinergic signaling systems in the ON and OFF pathways of the inner plexiform layer of the mouse retina are functionally different. The distribution of P2X2 purinoceptors may be responsible for the selective regulation of ACh release in the OFF pathway.