Published in

American Chemical Society, Analytical Chemistry, 16(73), p. 3884-3889, 2001

DOI: 10.1021/ac010072o

Links

Tools

Export citation

Search in Google Scholar

Liquid Chromatography at the Critical Condition for Polyisoprene Using a Single Solvent

Journal article published in 2001 by Wonmok Lee ORCID, Soojin Park, Taihyun Chang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Liquid chromatography at the chromatographic critical condition has drawn much attention as an attractive characterization method of block copolymers since it has been proposed that a part of a polymer chain becomes "chromatographically invisible" at this condition, which would permit the characterization of individual blocks. A critical condition for a polymer species has been commonly established by use of mixed-solvent systems. It is not easy, however, to reproduce the critical condition since the retention of polymers depends very sensitively on the solvent composition and purity. Furthermore, the preferential sorption of a component in a mixed solvent may cause an additional problem. Therefore, the use of a single solvent is highly desirable to improve the reproducibility as well as the repeatability. In this study, a single-solvent critical condition for polyisoprene was established with 1,4-dioxane and C18 bonded silica as the mobile and stationary phases, respectively. At this condition, the "chromatographic invisibility" of polystyrene-polyisoprene diblock copolymers was critically examined and it was found that a rigorous chromatographic invisibility was not achieved and the retention of the block copolymers was affected by the length of the blocks under the critical condition. Some other chromatographic applications using the single-solvent system are also reported.